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Matroid Basics

A matroid M = (N,F) consists of elements e ∈ N and a set of independent sets F ⊆ 2N . It follows
to properties:

1. Downward-closed: For all I ⊆ J with J ∈ F , then I ∈ F .

2. Matroid exchange: For all I, J ∈ I, if |J | > |I|, then there exists e ∈ J r I such that
I ∪ {e} ∈ F .

The rank of a set S is the size of the largest Independent Set (IS) in S:

rank(S) := max{|I| | I ∈ F , I ⊆ S}.

The span of a set S is the largest set of elements that has the same rank as S:

span(S) = {e ∈ N | rank(S + {e}) = rank(S)}.

Note that:

• rank(S) = rank(span(S))

• for S ∈ E, rank(S) = |S|

• rank(S) ≤ rank(S′) for S ⊆ S′.

A basis S is independent and maximal: |S| = rank(S) = rank(N).

The independence polytope is convex hull of the independent sets: PF = {x ∈ RM≥0 | ∀S ⊆
F
∑

i∈S xe ≤ rank(S)}.

The base polytope is the convex hull of the bases: PB = {x ∈ PF | x(N) = rank(N)} where
x(S) :=

∑
xe∈S xi.

We define two operations on matroids:

• Restriction: M |N ′ = (N ′,F ∩ 2N
′
). Think like a subgraph.

• Contraction: M/N ′ = (N r N ′,F ′) where I ′ = {S ⊆ N r N ′ | rank(S ∪ N ′) = |S| +
rank(N ′)}. That is, the matroid with the elements N ′ removed, and the independent sets of
the contraction must be independent itself and not spanned by N ′. Essentially saving room
for independent sets in N ′, and N ′ need not be independent.



Online Contention Resolution Schemes by Feldman, Svensson, Zen-
klusen [SODA ’16]

CRS already existed for offline problems. This paper focuses on online selection problems, such as
prophet inequalities, stochastic probing, and more, with feasibility constraints, such as matroids,
knapsack, and matching. Today we’ll focus on matroid feasibility constraints, and use prophet
inequalities as a running example.

Traditionally in the prophet inequality problem: ve arrives online with ve ∼ Fe. The goal is
to approximation E[maxe∈I ve] for some I ∈ F . Usual algorithms set Te and accept if ve ≥ Te and

Figure 1: The prophet inequality problem.

feasible.

opt =
∑
e

Pr[e ∈ MWB]E[ve | e ∈ MWB]

≤
∑
e

x∗e E[ve | ve ≥ te,Pr[ve ≥ te] = x∗e].

Converting the problem to this probability of being “on” or “active” and then just the expected
weight is called the ex ante relaxation, as this is the LP where you solve for these probabilities.

For a matroid M = (N,F), the independence polytope is

PF = {x ∈ RN≥0 | ∀S ⊆ N
∑
e∈S

xe ≤ rank(S)}.

This is the convex hull of independent sets.

• R(x) is the set of active elements. That is, there is some distribution Fe over the weight
ze of element e, and for a threshold te, e ∈ R(x) if ze ≥ te which occurs with probability
xe = Pr[e ∈ R(x)].

• A greedy OCRS for PF , for any x ∈ PF , selects a downward-closed subfamily Fx ⊆ F . An
element e is taken if it is active and if, with the other take elements so far, the combined set
is feasible in Fx.

• For c ∈ [0, 1], a greedy OCRS for PF is c-selectable if for any x ∈ PF ,

PrR(x)[I ∪ {e} ∈ Fx ∀I ⊆ R(x), I ∈ Fx] ≥ c ∀e ∈ N,

that is, every e is feasible to take with probability at least c, or, e is not spanned by any
active independent set from I with probability at least c.



• For b, c ∈ [0, 1], a greedy OCRS for PF is (b, c)-selectable if for any x ∈ b · PF ,

PrR(x)[I ∪ {e} ∈ Fx ∀I ⊆ R(x), I ∈ Fx] ≥ c ∀e ∈ N.

Our goal in the next section is to construct a (b, 1− b)-selectable OCRS for matroids. This implies
a b(1−b)-selectable OCRS for the non-scaled polytope. This is because we can “scale” each x ∈ PF
to b · PF by just considering each element e online independently with probability b before looking
at its weight.

Alg =
∑
i

Pr[over threshold] · E[ve | over Te] · Pr[feasible to take]

≥
∑
e

x∗e E[ve | ve ≥ Te] · b(1− b)

≥ b(1− b) · opt

Online, our algorithm: set Te = te unless it’s infeasible to take e wrt Fx, then Te =∞.

Constructing a (b, 1− b)-selectable greedy OCRS for matroids

Let (M/S1)|S2 be the matroid of M with S1 contracted and restricted to S2. That is, I is indepen-
dent in (M/S1)|S2 if I ⊆ S2 and I ∪ S′1 is an independent set in M for rank(S′1) = rank(S1).

We construct a chain of growing sets

∅ = N` ⊂ N`−1 ⊂ · · · ⊂ N1 ⊂ N0 = N

and our greedy OCRS accepts an active element e ∈ Ni \ Ni+1 if e together with the already
accepted elements in Ni \Ni+1 forms an independent set in (M/Ni+1)|Ni . That is,

Fx = {I ⊆ N | ∀I ∩ (Ni \Ni+1) is independent in (M/Ni+1)|Ni}.

Observe that Fx is downward-closed and a sub-family of F .
Intuitively, we will choose N`−1 to be the elements that are very likely to be spanned by others,

that is, it is very likely that we would take a different element that would preclude us from taking
the elements of N`−1. This way, we will save room for the elements in N`−1 by requiring the
feasible sets to form an independent set with a maximal rank set of N`−1. By “saving room” for
the elements in a hierarchical way, we will prioritize the sets such that each element has probability
b of being selected. We do this by first separating all of the elements that have too low a probability
of being chosen and then prioritize these, selecting subsequent subsets as necessary.

This shows how to construct the first subset N1. Let S0 = ∅ and S1 = {e ∈ N | PrR(x)[e ∈
span(R(x) \ {e})] > b}, the set of elements likely to be spanned by the active elements. Then

Si = {e ∈ N | PrR(x)[e ∈ span(R(x) ∪ Si−1) \ {e}] > b},

that is, Si contains the elements that are likely to be spanned assuming that the elements of Si−1
are contracted (or equivalently appear with probability 1). Note that Si−1 ⊆ Si for all i ≥ 1 and
Si = Si−1 implies that Si = Sj for all j > i. Then define N1 = S = S|N |.



We now aim to show that we make progress with this construction, that is, N1 ⊂ N . Since
S = N1 would only increase in size as coordinates of x increase, we show that we make progress
for a maximal x, that is, x ∈ b · PB where PB = {x ∈ PF | x(N) = rank(N)} is the base polytope
of the matroid M , the set of all maximal vectors in PF . The following corollary (which uses the
following lemma) shows that we do make progress.

Lemma 1. It always holds that for S 6= ∅,∑
e∈N

xePrR(x)[e ∈ span(R(x) ∪ S)] < b[x(N) + (1− b)rank(S)].

Proof. Let S′ = {e1, e2, . . . , ek} be a basis of the matroid M |S obtained by first greedily selecting
elements from S1, then S2, and so on.

Let A be a random set distributed like R(x). For j = 1, . . . , k, if ej 6∈ span(A), add ej to A.
Call the distribution of the A to be µ.

That is, S is the full set of elements likely to spanned. S′ is a greedily (inside to out) built basis
of S. A is a realization of R(x) with elements of S′ that are not already spanned added. Then
span(S ∪R(x)), span(S′ ∪R(x)), and span(A) are identically distributed, thus

∑
e∈N

xePrR(x)[e ∈ span(R(x) ∪ S)] =
∑
e∈N

xePrA∼µ[e ∈ span(A)]

= EA∼µ[x(span(A))]

≤ b · EA∼µ[rank(span(A))] x ∈ b · PF
= b · EA∼µ[rank(A)]

≤ b · EA∼µ[|A|]



and

EA∼µ[|A|] = x(N) +
k∑
j=1

Pr[ej 6∈ span(R(x) ∪ {e1, . . . , ej−1})] def. of A

< x(N) + (1− b)k construction of S

= x(N) + (1− b) · rank(S)

Hence ∑
e∈N

xePrR(x)[e ∈ span(R(x) ∪ S)] < b[x(N) + (1− b)rank(S)].

Corollary 1. If N 6= ∅ then N1 = S ⊂ N .

Proof. If S = ∅, then the corollary is true. Otherwise,

x(S) ≤ x(span(R(x) ∪ S)) S ⊆ span(R(x) ∪ S)

=
∑
e∈N

xePrR(x)[e ∈ span(R(x) ∪ S)]

< b · [x(N) + (1− b)rank(S)] Lemma 1

≤ b · rank(N) rank(S) ≤ rank(N);x(N) = b · rank(N)

= x(N) x ∈ b · PB

Hence x(S) < x(N), so N \ S 6= ∅.

This gives the next theorem, and using their Theorem 1.9, the theorem after.

Theorem 2. For b ∈ [0, 1], there exists a (b, 1 − b)-selectable deterministic greedy OCRS for any
matroid polytope PF ⊆ [0, 1]N on ground set N .

Theorem 3. For b ∈ [0, 1], and k matroid polytopes P1, . . . , Pk ⊆ [0, 1]N over a common ground
set N , there exists a (b, (1− b)k)-selectable deterministic greedy OCRS for P =

⋂k
i=1 Pi.


